ELSEVIER

Synthesis, characterization and reaction of the cluster complexes containing tetrahedral core MRuCoSe . The single crystal X-ray structures of the clusters $\mathrm{RuCoMo}(\mathrm{CO})_{8}\left(\mu_{3}-\mathrm{Se}\right) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}\left[\mathrm{R}=\mathrm{CH}_{3}\right.$, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3}$]

Er-Run Ding ${ }^{\text {a }}$, Yuan-Qi Yin ${ }^{\text {a,* }}$, Jie Sun ${ }^{\text {b }}$
${ }^{\text {a }}$ State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
${ }^{\mathrm{b}}$ Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China

Received 26 November 1997

Abstract

Several chiral cluster derivatives $\mathrm{RuCoMo}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{8} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}\left[\mathrm{R}=\mathrm{H} \mathbf{2}, \mathrm{CH}_{3} \mathbf{3}, \mathrm{C}_{6} \mathrm{H}_{5} \mathbf{4}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3}\right.$ 5] were synthesized by the thermal reaction of the precursor $\left(\mu_{3}-\mathrm{Se}_{2}\right) \mathrm{RuCo}_{2}(\mathrm{CO})_{9} \mathbf{1}$ with the functionally substituted cyclopentadienyl tricarbonyl metal complex anions $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}(\mathrm{O}) \mathrm{R}\right]^{-}$without using benzophenone ketyl as initiator. Similarly, the reaction of the novel type of dianions ${ }^{-} \mathrm{Mo}(\mathrm{CO})_{3}\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right](\mathrm{CO})_{3} \mathrm{Mo}^{-}$with two molecules of cluster $\mathbf{1}$ gave a terephthaloyl(biscyclopentadienyl) bridged cluster complex ($\left.\mu_{3}-\mathrm{Se}\right) \mathrm{RuCoMo}(\mathrm{CO})_{8}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{RuCoMo}(\mathrm{CO})_{8}\left(\mu_{3}-\mathrm{Se}\right) \mathbf{6}$. The cluster $\mathbf{3}$ reacted with NaBH_{4} in MeOH to give the secondary alcohol cluster $\mathrm{RuCoMo}\left(\mu_{3}-\mathrm{Se}\right)$ $(\mathrm{CO})_{8} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ 7. Cluster 3 reacted with $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ in THF under reflux followed by acidic treatment with $40 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ to yield the new cluster $\operatorname{HRuFeMo}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{8} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3} 8$. Cluster 3 and 5 have been solved by single-crystal X-ray diffraction. Crystal data for cluster 3: orthorhombic, space group Pbca, $a=26.387(3) \AA, b=18.273(2) \AA, c=15.963(2) \AA$, $V=7696(2) \AA^{3}, Z=16$ and $R=0.023, w R=0.027$. Crystal data for cluster 5: triclinic, space group $P \overline{1}, a=8.200(2) \AA$, $b=19.631(7) \AA, c=7.997(2) \AA, \alpha=92.50(2)^{\circ}, \beta=108.66(2)^{\circ}, \gamma=88.97(2)^{\circ}, V=1218.5(6) \AA^{3}, Z=2$ and $R=0.054, w R=0.077$. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Transition metal; Cluster complex; Chiral; Crystal structure

1. Introduction

Intense interest in transition-metal clusters continues because they represent possible conceptual bridges between homogeneous and heterogeneous catalysts moreover also because they represent synthetic challenges. The use of elements of Group 16 of the Periodic Table as single atom ligands for cluster growth and stabilization of the metal core are now well established [1]. In recent years, the increased use of tellurium for this

[^0]purpose has indicted that differences exist in the behavior of Te-bridged clusters from that containing bridging S atom [2]. There is an increasing interest in the use of Se-bridged clusters. Many reactions of $\mathrm{SeFe}_{2}(\mathrm{CO})_{6}$ and $\mathrm{Se}_{2} \mathrm{Fe}_{3}(\mathrm{CO})_{9}$ have been reported [3]; however, there was very little work concerning the selenium-ruthenium mixed-metal clusters. We have not found the X-ray structure of the clusters containing tetrahedral core RuCoMSe before our work, although the synthetic method of $\mathrm{SeRuCoMoC}_{5} \mathrm{H}_{5}(\mathrm{CO})_{9}$ has been reported by Vahrenkamp [4]. In this paper, the synthesis, characterization and reactions of this novel type of cluster complexes were reported.

2. Results and discussion

2.1. The chemistry starting from the monoanions $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}(\mathrm{O}) \mathrm{R}\right]^{-} \quad\left[\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3}$] (I). Preparation of 2-5

$\mathrm{R}=\mathrm{H} \mathbf{2}, \mathrm{CH}_{3} \mathbf{3}, \mathrm{C}_{6} \mathrm{H}_{5} 4, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3} 5$
Functionally substituted cyclopentadienyl tricarbonyl
by this stronger reduction agent. The reaction of $\mathbf{3}$ with $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]$ in refluxing THF, followed by acid treatment of the reaction mixture by deoxygenated 40% $\mathrm{H}_{3} \mathrm{PO}_{4}$, gave a new air-sensitive cluster $\mathrm{HRuFeMo}\left(\mu_{3}-\right.$ $\mathrm{Se})(\mathrm{CO})_{8} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3} 8$ in low yield, which was confirmed by C / H analysis, IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. The results show that the metal fragment $\mathrm{Co}(\mathrm{CO})_{3}$ in 3 could be exchanged by $\mathrm{HFe}(\mathrm{CO})_{3}$ through thermal reaction. The H atom in cluster $\mathbf{8}$ may be bonded to the RuFeCo triangular metal base as a face bridging position as described previously [6] (See Scheme 1).

2.2. Characterization of 2-5 and 7-8

group 16 metal anions $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}(\mathrm{O}) \mathrm{R}\right]^{-}$ were proved to be important in the synthesis of organometallic and metal cluster complexes containing the structure unit $\left.\mathrm{Mo}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{R}\right]^{-}$[5]. Now we have found an additional use of the monoanions in the synthesis of tetrahedral RuCoMoSe core cluster complexes. The reaction of cluster $\mathbf{1}$ with $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}(\mathrm{O}) \mathrm{R}\right]^{-}$in refluxing THF afforded a moderate yield of clusters $\mathrm{RuCoMo}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{8} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}$ $\left[\mathrm{R}=\mathrm{H} 2, \mathrm{CH}_{3} 3, \mathrm{C}_{6} \mathrm{H}_{5} 4, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3} 5\right]$ as shown in Scheme 1. These air-stable clusters are black in solid and red-purple in solution. Data of C/H analysis, IR, ${ }^{1} \mathrm{H}$-NMR, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and MS of them were consistent with the expected structure presented in Fig. 1. The results showed that one of the $\mathrm{Co}(\mathrm{CO})_{3}$ unit in cluster 1 could be exchange by isoelectronic $\mathrm{Mo}(\mathrm{CO})_{2} \mathrm{C}_{5}$ $\mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}$ unit and gave the new chiral skeleton clusters 2-5.

Cluster 3 could be reduced by NaBH_{4} in methanol at room temperature to the secondary alcohol cluster Ru -$\mathrm{CoMo}\left(\mu_{3}-\mathrm{Se}\right)(\mathrm{CO})_{8} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} 7$ in high yield, and we attempted to reduce cluster 3 with $\mathrm{LiAlH}_{4} /$ AlCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ but failed, While it was decomposed

All the clusters showed a large number of stronger terminal carbonyl absorption bands located at 2097$1849 \mathrm{~cm}^{-1}$ in IR spectra. The IR spectra of $\mathbf{2 - 5}$ and 7 also showed corresponding $\mathrm{C}=\mathrm{O}$ absorption at 1653$1688 \mathrm{~cm}^{-1}$, and the absorption of hydroxyl group of 7 appeared at around $3379 \mathrm{~cm}^{-1}$. For the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ assignment of the clusters, proton chemical shifts of the substituted cyclopentadienyl groups appeared downfield than the unsubstituted cyclopentadienyl [7], since formyl, acetyl and ester carbonyls are well known elec-tron-withdrawing groups. It is interesting that the ${ }^{1} \mathrm{H}$ NMR spectra of cyclopentadienyl in the clusters showed four singlets at $5.22-6.05 \mathrm{ppm}$, all the protons in cyclopentadienyl are non-equivalent, we believe that was caused by the chirality of the tetrahedral cluster core $\mathrm{RuMMoSe}(\mathrm{M}=\mathrm{Co}, \mathrm{Fe})$. The same reason there are five Cp Carbon signals quoted for the ${ }^{13} \mathrm{C}$ NMR spectra of clusters 2, 3, and 5. The proton bonded to metal atoms in $\mathbf{8}$ appears at -16.67 ppm . The FAB MS spectra of clusters 2, 3, $\mathbf{5}$ do not contain molecular ion peaks but show peaks of species produced by substantial release of carbonyls from the clusters.

Cluster 6
Scheme 1.

Fig. 1. Perspective view of the molecular unit of 3.

2.3. The chemistry generated from the bridging dianions $-\mathrm{Mo}(\mathrm{CO})_{3}\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\right](\mathrm{CO})$ ${ }_{3} \mathrm{Mo}$ - (II). Preparation of the cluster 6

The novel metal exchange reagent of II was formed in refluxing THF by the reaction of two equivalents of $\mathrm{Mo}(\mathrm{CO})_{6}$ with $\left[\mathrm{NaC}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})\right]_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ obtained the reaction of $\mathrm{NaC}_{5} \mathrm{H}_{4}$ and dimethy terephthalate in THF. Reaction of two molecules $\mathbf{1}$ with II in reluxing THF gave a new two-tetrahedral core cluster ($\mu_{3}-$ $\mathrm{Se})(\mathrm{CO})_{8}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{RuCoMo}$ $(\mathrm{CO})_{8}\left(\mu_{3}-\mathrm{Se}\right)$ 6. The formula was confirmed by the elemental analysis and FAB MS. Cluster $\mathbf{6}$ is believed to be isostructural to the cluster $\left[\mathrm{RuCoW}\left(\mu_{3}-\mathrm{S}\right)\right.$ $\left.(\mathrm{CO})_{8}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{C}(\mathrm{O})\right]_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ based on the similar spectra of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and IR absorption patterns, the crystal structure of which was determined by X-ray diffraction [8]. Cluster 6 is made of two identical tetrahedral skeletons subclusters RuCoMoSe , which connected with the bridge of $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}_{5} \mathrm{H}_{4}-\eta^{5}$ ligand through Mo atoms (Scheme 1). No cluster complexes containing two RuCoMSe subcluster cores were reported, although a few such single cluster complexes have appeared in literature [4].

2.4. Structure of $\mathbf{3}$ and $\mathbf{5}$

Cluster $\mathbf{3}$ and $\mathbf{5}$ were determined by X-ray structure analysis. Crystal data were collected in Table 1. Tables 2 and 3 give the atomic coordinates, selected bond length and angles are listed in Tables 4 and 5. Unexpectedly, the structure of $\mathbf{3}$ contains two isomeric molecules (A and B) in a unit cell, (Fig. 1), the tetrahedral core of each molecule in $\mathbf{3}$ is composed of four elements that are Ru, Co, Mo and Se . The acute angles in tetrahedral geometry of $\mathbf{3}$ about the basal atoms range from 53.07 to 64.62°, and those about the selenium atom average 69.98°, which deviates a bit from a perfect tetrahedral geometry. The electron count for the 3 is conventional. The chiral cluster 3 is structurally related to known clusters $\mathrm{SFeCoMo}(\mathrm{CO})_{8} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{R}$ $\left[\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{CH}_{3}\right]$ [9,10]. It is isostructural and isoelectronic with them.
The cluster 5 shown in Fig. 2 exhibits a same RuCoMoSe tetrahedron geometry as in cluster 3. The tetrahedral core in $\mathbf{5}$ also contains a slightly distorted triangular RuCoMo capped by a selenium ligand with $\mathrm{Se}-\mathrm{Ru}=2.455(2), \quad \mathrm{Se}-\mathrm{Co}=2.296$ (2) and $\mathrm{Se}-\mathrm{Mo}=$ $2.538(2) \AA$. Six of the CO ligands bond terminally to
the Ru and Co atoms, while for the Mo atom the remaining CO ligands are slightly nonlinear. Cluster 5 contains total of 48 electrons and it is electronically saturated.

3. Experimental details

All reactions were carried out under an atmosphere of pure nitrogen by using standard Schlenk techniques. All solvents were thoroughly dried and distilled immediately before use. IR spectra were recorded on a Nicokel FT-IR 10D spectrophotometer, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Brucker AM-300 MHz spectrometer, elemental analyses and FAB MS were performed on an 1106-type analyzer and Finnigan MAT 8430 respectively. $\mathrm{Mo}(\mathrm{CO})_{6}$ was bought from

Table 1
Crystal and refinement data for the clusters 3 and 5

Cluster	$\mathbf{3}$	$\mathbf{5}$
Formula	$\mathrm{C}_{30} \mathrm{H}_{14} \mathrm{O}_{18} \mathrm{Ru}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{11} \mathrm{O}_{11} \mathrm{RuCo}$
	$\mathrm{Co}_{2} \mathrm{Mo}_{2} \mathrm{Se}_{2}$	MoSe
M_{r}	1332.24	786.23
System	Orthorhombic	Triclinic
Space group	$P b c a$	$P \overline{1}$
$F(000)$	5056.00	756.00
$a(\AA)$	$26.387(3)$	$8.200(2)$
$b(\AA)$	$18.273(2)$	$19.631(7)$
$c(\AA)$	$15.963(2)$	$7.997(2)$
$\alpha\left({ }^{\circ}\right)$		$92.50(2)$
$\beta\left({ }^{\circ}\right)$	$108.66(2)$	
$\gamma\left({ }^{\circ}\right)$	$88.97(2)$	
$V\left(\AA^{3}\right)$		$1218.5(6)$
Z	$7696(2)$	2
$D_{\text {calc }}\left(\mathrm{g}\right.$ cm $\left.{ }^{-3}\right)$	16	2.143
$\left.\mu(\text { Mo-K })_{\alpha}\right)$ cm ${ }^{-1}$	2.299	33.44
Crystal dimensions	42.05	0.20×0.20
	0.20×0.20	$\times 0.30 \mathrm{~mm}$
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\times 0.30 \mathrm{~mm}$	20.0
Scan type	20.0	$\omega-2 \theta$
Absorption correction	$\omega-2 \theta$	Lorentz-polar-
	iorentz-polariza-	
$2 \theta_{\text {max }}\left({ }^{\circ}\right)$	50.0	tion
No. of reflections measured	6138	45.5
No. observations [I>	4599	3454
$3.00(s)]$	2644	
No. variables		
$R e f l e c t i o n s /$ parameter ratio	906	335
R^{a}	9.09	7.89
$w R^{\mathrm{b}}$	0.023	0.054
Goodness-of-fit indicator	0.027	0.077
Max peak in final diff. map	0.42	2.76
$\left(\mathrm{e} \AA \AA^{-3}\right)$	2.82	
Min peak in final diff. map	-0.41	-1.24
$\left(\mathrm{e} \AA \AA^{-3}\right)$		

[^1]Table 2
Non-hydrogen atomic coordinates and isotropic thermal parameters for 3

Atom	x	y	z	$B_{\text {eq }}$
$\mathrm{Ru}(1)$	$0.99099(1)$	$0.19796(2)$	0.12405(3)	2.795(9)
$\mathrm{Ru}(2)$	0.77413(1)	0.02714(2)	0.20465(3)	2.796 (9)
Mo(1)	0.99563(2)	0.08674(2)	0.25385(3)	2.489(9)
$\mathrm{Mo}(2)$	$0.77187(1)$	-0.12334(2)	$0.26076(3)$	2.312(9)
$\mathrm{Se}(1)$	0.95560(2)	0.07490 (3)	0.11253(3)	2.72(1)
$\mathrm{Se}(2)$	0.84773(2)	$-0.05437(3)$	$0.20858(3)$	2.84(1)
$\mathrm{Co}(1)$	1.04304(2)	0.07631(3)	0.09840 (4)	2.67(1)
$\mathrm{Co}(2)$	0.79361(2)	-0.07988(4)	0.09819(4)	2.84(1)
$\mathrm{O}(1)$	0.8932(1)	0.1620(2)	0.3002(2)	5.1(1)
$\mathrm{O}(2)$	$1.0565(2)$	$0.2229(2)$	0.3160(3)	5.4(1)
$\mathrm{O}(3)$	1.0654(1)	-0.0808(2)	0.0999(2)	4.6(1)
$\mathrm{O}(4)$	1.1357(1)	$0.1285(2)$	0.1767(3)	5.4(1)
$\mathrm{O}(5)$	1.0557(1)	0.1164(2)	-0.0781(2)	4.59(10)
$\mathrm{O}(6)$	1.0777(1)	0.3070(2)	0.1427(3)	6.0(1)
$\mathrm{O}(7)$	0.9663(1)	0.2388(2)	$-0.0563(2)$	4.9(1)
$\mathrm{O}(8)$	0.9119(2)	$0.3035(2)$	0.1883(3)	6.7(1)
$\mathrm{O}(9)$	$1.0092(2)$	0.1134(2)	0.5055(3)	5.6(1)
$\mathrm{O}(10)$	0.6646(1)	-0.0544(2)	0.2742(2)	4.38(10)
$\mathrm{O}(11)$	0.8034(2)	-0.0540(2)	0.4334(2)	5.7(1)
$\mathrm{O}(12)$	0.8453(2)	-0.2095(2)	0.0312(3)	5.9(1)
$\mathrm{O}(13)$	0.8189(2)	0.0249(2)	$-0.0338(3)$	6.4(1)
$\mathrm{O}(14)$	0.6872(1)	-0.1114(3)	0.0652(3)	6.6(1)
$\mathrm{O}(15)$	0.8348(1)	0.1503(2)	0.1266(2)	4.42(10)
$\mathrm{O}(16)$	0.6723(1)	0.0779(3)	0.1364(3)	6.4(1)
$\mathrm{O}(17)$	0.7661(2)	0.1081(2)	0.3698(3)	6.3(1)
$\mathrm{O}(18)$	0.7431(1)	-0.2092(2)	0.4859(2)	5.3(1)
C(1)	0.9313(2)	0.1376(3)	$0.2815(3)$	3.3(1)
C(2)	1.0334(2)	0.1767(3)	0.2850 (3)	3.7(1)
C(3)	1.0561(2)	-0.0201(3)	0.0987(3)	3.1(1)
C(4)	1.0982(2)	0.1100(3)	0.1472(3)	3.5(1)
C(5)	$1.0512(2)$	0.1010 (3)	-0.0096(4)	3.3(1)
C(6)	$1.0456(2)$	$0.2667(3)$	$0.1366(4)$	4.0(1)
C(7)	$0.9765(2)$	0.2240(3)	0.0109(4)	3.4(1)
C(8)	0.9416(2)	0.2632(3)	0.1645(4)	3.9(1)
C(9)	0.9633(2)	-0.0050(3)	0.3359(3)	3.3(1)
C(10)	0.9955(2)	-0.0394(3)	0.2781(3)	3.8(1)
C(11)	$1.0456(2)$	$-0.0157(3)$	0.2926(3)	3.9(1)
C(12)	$1.0449(2)$	0.0345(3)	$0.3596(3)$	3.7(1)
C(13)	0.9932(2)	0.0412(3)	0.3880(3)	2.8(1)
C(14)	$0.9775(2)$	0.0833(3)	0.4632(3)	4.0(1)
C(15)	0.9236(2)	$0.0845(3)$	$0.4855(4)$	5.4(2)
C(16)	0.7062(2)	-0.0712(3)	0.2649 (3)	2.9(1)
C(17)	0.7911(2)	-0.0773(3)	0.3704(3)	3.5(1)
C(18)	0.8251(2)	-0.1606(3)	0.0578(3)	3.9(1)
C(19)	0.8093(2)	-0.0146(3)	0.0190(3)	3.8(1)
$\mathrm{C}(20)$	0.7283(2)	-0.0990(3)	0.0804(3)	4.2(1)
C(21)	0.8116(2)	0.1044(3)	0.1540(3)	3.4(1)
C(22)	$0.7095(2)$	0.0587(3)	0.1626(4)	4.0(1)
C(23)	0.7690(2)	0.0777(3)	0.3074(4)	4.0(1)
C(24)	$0.7215(2)$	$-0.2277(2)$	0.2587(3)	3.1(1)
C(25)	$0.7605(2)$	-0.2413(3)	0.2012(3)	3.5(1)
C(26)	0.8075(2)	-0.2402(3)	0.2432(3)	3.6(1)
C(27)	0.7976(2)	-0.2275(3)	0.3289(3)	3.3(1)
C(28)	$0.7435(2)$	-0.2190(2)	0.3397(3)	2.9(1)
C(29)	0.7184(2)	$-0.2117(3)$	0.4225 (3)	3.4(1)
C(30)	0.6625(2)	-0.2086(3)	0.4235(4)	4.4(1)

[^2]Aldrich, $\quad \mathrm{Co}_{2}(\mathrm{CO})_{8} \quad[11], \quad \mathrm{Ru}_{3}(\mathrm{CO})_{12} \quad[12], \quad\left(\mu_{3}-\right.$ $\mathrm{Se}) \mathrm{RuCo}_{2}(\mathrm{CO})_{9} \quad[13], \quad \mathrm{RC}(\mathrm{O}) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Na} \quad\left[\mathrm{R}=\mathrm{H}, \quad \mathrm{CH}_{3}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3}\right]$ [14] were prepared according to the literature.

3.0.1. Preparation of 2, 3, $\mathbf{4}$ and $\mathbf{5}$

$\mathrm{Mo}(\mathrm{CO})_{6}(264 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added to a solution of sodium formylcyclopentadienide ($116 \mathrm{mg}, 1.0$ mmol) in THF (20 ml). The mixture was refluxed for 16 h and cooled to room temperature. Then 550 mg $(1.0 \mathrm{mmol})$ of cluster $\mathbf{1}$ was added and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 h . The solvent was removed under vacuum, the residue was extracted by minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the products were chro-

Table 3
Non-hydrogen atomic coordinates and isotropic thermal parameters for 5

Atom	x	y	z	$B_{\text {eq }}$
Ru	0.3269(1)	0.83175(5)	0.0957(1)	3.06(2)
Mo	0.0376(1)	0.78602(5)	-0.2038(1)	2.61(2)
Se	$0.0305(1)$	0.87347(7)	0.0371(2)	3.41(3)
Co	0.1629(2)	$0.91826(8)$	-0.1464(2)	3.46(4)
$\mathrm{O}(1)$	0.506(1)	0.9412(6)	0.365(1)	7.3(3)
O(2)	0.658(1)	0.7878(6)	0.034(1)	6.4(3)
$\mathrm{O}(3)$	0.364(1)	0.7299(6)	0.378(1)	6.1(3)
$\mathrm{O}(4)$	0.358(1)	0.7075(5)	-0.236(1)	4.8(2)
$\mathrm{O}(5)$	0.014(1)	0.6834(5)	0.078(1)	5.2(3)
O(6)	-0.131(1)	0.9912(5)	-0.384(1)	5.9(3)
$\mathrm{O}(7)$	0.347(1)	1.0374(5)	0.050(2)	6.3(3)
$\mathrm{O}(8)$	0.371(1)	0.8724(6)	-0.366(1)	6.8(3)
$\mathrm{O}(9)$	0.033(1)	0.6148(5)	-0.455(1)	5.2(3)
$\mathrm{O}(10)$	-0.380(2)	0.3828 (7)	-0.095(2)	9.2(5)
$\mathrm{O}(11)$	-0.617(1)	0.4457(5)	-0.191(1)	5.0(3)
$\mathrm{C}(1)$	0.437(2)	0.9006 (7)	0.264(2)	4.2(3)
C(2)	0.534(2)	0.8044(8)	0.055(2)	4.4(3)
C(3)	0.350(1)	0.7674(7)	0.267(1)	3.5(3)
$\mathrm{C}(4)$	0.252(1)	0.7393(6)	-0.210(1)	3.0(3)
C(5)	0.032(1)	0.7220(7)	-0.020(2)	3.4(3)
C(6)	-0.017(2)	0.9621 (7)	-0.292(2)	4.6(3)
C (7)	0.276(2)	0.9899(7)	-0.024(2)	4.5(3)
C(8)	0.2906 (9)	0.8785(5)	-0.253(1)	1.0(2)
$\mathrm{C}(9)$	-0.058(2)	0.7556 (7)	-0.504(1)	3.5(3)
$\mathrm{C}(10)$	-0.131(2)	$0.8196(7)$	-0.487(2)	4.0(3)
$\mathrm{C}(11)$	-0.238(1)	0.8170(6)	-0.386(2)	3.7(3)
$\mathrm{C}(12)$	-0.236(1)	0.7483(6)	-0.334(1)	3.4(3)
C(13)	-0.126(1)	0.7091(6)	-0.409(1)	3.1(3)
C(14)	-0.085(2)	0.6357(6)	-0.404(1)	3.4(3)
C(15)	-0.187(2)	0.5850(6)	-0.341(1)	3.1(3)
C(16)	-0.360(2)	0.5940(6)	-0.358(1)	3.6 (3)
C(17)	-0.450(2)	0.5458(6)	-0.307(1)	3.4(3)
$\mathrm{C}(18)$	-0.364(2)	0.4881(6)	-0.226(1)	3.8(3)
C (19)	-0.192(2)	0.4789(7)	-0.214(2)	5.4(4)
C(20)	-0.105(2)	0.5278 (7)	-0.270(2)	5.0(4)
$\mathrm{C}(21)$	-0.452(2)	0.4324(7)	-0.166(2)	4.91(4)
C(22)	-0.704(2)	0.3905(9)	-0.146(2)	6.4(5)

[^3]matographed on a $2.5 \times 20 \mathrm{~cm}$ silica gel column using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane as eluent. The main product of $\mathbf{2}$ ($340 \mathrm{mg}, 52 \%$) was obtained as black solid (m.p. $84-$ $85^{\circ} \mathrm{C}$). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{5} \mathrm{O}_{9} \mathrm{RuCoMoSe}: \mathrm{C}, 25.75$; $\mathrm{H}, 0.77$. Found: C, 25.89; H, 0.81. IR(KBr disk) 2086vs, 2037vs, 2024vs, 1997vs, 1968vs, 1947vs, 1910vs, 1866s, 1653vs cm ${ }^{-1}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $5.55,5.66,5.84,5.90\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; \delta 9.70(\mathrm{~s}, 1 \mathrm{H}$, CHO). ${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right) \quad \delta \quad 89.22,89.05, ~ 93.46$, 94.97, 97.33, $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) ; \delta 184.92 ;(\mathrm{C}=\mathrm{O}), \delta 210(\mathrm{t}-\mathrm{CO})$.

Procedures for the preparation of $\mathbf{3 , 4}$ and $\mathbf{5}$ were similar to that for the preparation of 2.
3. $(364 \mathrm{mg}, 54 \%) \mathrm{m} . \mathrm{p} .109-110^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{O}_{9} \mathrm{H}_{7} \mathrm{RuCoMo:} \mathrm{C}, \mathrm{27.05;} \mathrm{H}, \mathrm{1.05}. \mathrm{Found:} \mathrm{C}$, 27.11; H, 1.08. IR (KBr disk) 2079vs, 2048vs, 2038vs, 2014vs, 1991vs, 1893vs, 1854m, 1686m. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta 5.46,5.56,5.67,5.88$ $\left(\mathrm{s}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 27.31\left(\mathrm{CH}_{3}\right), \delta$ 89.49, 89.98, 92.89, 95.02, $97.85\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) ; 198.82$ (C=O), 215 (t-CO). MS (FAB Ru ${ }^{103}$) 639 (M - CO), 611 (M-2CO), 583 (M - 3CO), 499 (M - 6CO).
4. $(320 \mathrm{mg}, 44 \%)$ Anal. Calc. For $\mathrm{C}_{20} \mathrm{H}_{9} \mathrm{O}_{9} \mathrm{RuCoMoSe}: \mathrm{C}, 32.99$; $\mathrm{H}, 1.24$. Found: C, 33.04, H, 1.26. IR (KBr disk) 2081vs, 2046vs, 2004vs, 1979vs, 1887s, 1656 m . ${ }^{1} \mathrm{H}$-NMR $\left(\mathrm{CDCl}_{3}\right) ~ \delta ~ 5.54$, $5.69,5.86,6.05\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; \delta 7.47-7.82(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$).
5. (370 mg, 47\%) Anal. Calc. For $\mathrm{C}_{22} \mathrm{H}_{11} \mathrm{O}_{11} \mathrm{RuCoMoSe}: \mathrm{C}, 33.61$; H, 1.40. Found: C, 33.66; H, 1.44. IR (KBr disk) 2080vs, 2039vs, 1998vs, $1919 \mathrm{~m}, 1726 \mathrm{~m}, \quad 1657 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.96$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $\delta 5.30,5.47,5.71,5.98\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $\delta \quad 7.83-8.08 \quad\left(\mathrm{~m}, \quad 4 \mathrm{H}, \quad \mathrm{C}_{6} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}\right)$ $\delta \quad 52.56\left(\mathrm{CH}_{3}\right) ; 90.58,91.78,93.07,94.14,97.88$ $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) ; 128.36,130.00,133.90,141.30\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) ; 166.10$, 189.41 (C=O); 229.6 (t-CO). MS (FAB Ru ${ }^{103}$) 758 $(\mathrm{M}-\mathrm{CO}), 730 \quad(\mathrm{M}-2 \mathrm{CO}), 674(\mathrm{M}-4 \mathrm{CO}), 646$ ($\mathrm{M}-5 \mathrm{CO}$).

3.0.2. Preparation of 6

The mixture of $\mathrm{Mo}(\mathrm{CO})_{6}(264 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\left[\mathrm{NaC}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})\right]_{2} \mathrm{C}_{6} \mathrm{H}_{4}(153 \mathrm{mg}, 0.5 \mathrm{mmol})$ were dissolved in 20 ml THF. The procedure was similar to that for the preparation of cluster 2, and 210 mg (30%) of 6 as a black solid of was obtained. Anal. Calcd. For $\mathrm{C}_{34} \mathrm{H}_{12} \mathrm{O}_{18} \mathrm{Ru}_{2} \mathrm{Co}_{2} \mathrm{Mo}_{2} \mathrm{Se}: \mathrm{C}, 29.63 ; \mathrm{H}$, 0.87. Found: C, 29.72; H, 0.91. IR (KBr disk) 2082vs, 2039vs, $\quad 1999 \mathrm{vs}, \quad 1873 \mathrm{~m}, \quad 1659 \mathrm{~m} . \quad \mathrm{cm}^{-1} . \quad{ }^{1} \mathrm{H}-$ NMR (CDCl_{3}) $\delta 5.29,5.46,5.75,5.96(\mathrm{~s}, 8 \mathrm{H}$, $\left.2 \mathrm{C}_{5} \mathrm{H}_{4}\right), \delta 7.88\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$.

3.0.3. Reduction of $\mathbf{3}$

$7.6 \mathrm{mg}(0.2 \mathrm{mmol})$ of NaBH_{4} was added to a solution of $3(65 \mathrm{mg}, 0.1 \mathrm{mmol})$ in 8 ml MeOH . The

Table 4
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 3

Molecule A					
$\mathrm{Ru}(1)-\mathrm{Mo}(1)$	2.9048(6)	$\mathrm{Ru}(1)-\mathrm{Se}(1)$	2.4417(6)	$\mathrm{Ru}(1)-\mathrm{Co}(1)$	2.6448(7)
$\mathrm{Ru}(1)-\mathrm{C}(6)$	$1.922(6)$	$\mathrm{Ru}(1)-\mathrm{C}(7)$	1.906 (6)	$\mathrm{Ru}(1)-\mathrm{C}(8)$	1.880(6)
$\mathrm{Mo}(1)-\mathrm{Se}(1)$	2.5002(6)	$\mathrm{Mo}(1)-\mathrm{Co}(1)$	2.7854(8)	$\mathrm{Mo}(1)-\mathrm{C}(1)$	$1.984(5)$
$\mathrm{Mo}(1)-\mathrm{C}(2)$	$1.986(6)$	$\mathrm{Se}(1)-\mathrm{Co}(1)$	2.3184(8)	$\mathrm{Co}(1)-\mathrm{C}(3)$	$1.795(6)$
$\mathrm{Co}(1)-\mathrm{C}(4)$	$1.762(5)$	$\mathrm{Co}(1)-\mathrm{C}(5)$	$1.795(6)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.485(7)$
C(14)-C(15)	1.467(8)	Mo(1)-Cp(1)	-1.988	$\mathrm{C}-\mathrm{O}(\mathrm{tco}$, av)	1.140
$\mathrm{Mo}(1)-\mathrm{Ru}(1)-\mathrm{Se}(1)$	54.94(2)	$\mathrm{Mo}(1)-\mathrm{Ru}(1)-\mathrm{Co}(1)$	60.03(2)	$\mathrm{Mo}(1)-\mathrm{Ru}(1)-\mathrm{C}(6)$	110.6(2)
$\mathrm{Mo}(1)-\mathrm{Ru}(1)-\mathrm{C}(7)$	149.2(2)	$\mathrm{Mo}(1)-\mathrm{Ru}(1)-\mathrm{C}(8)$	103.1(2)	$\mathrm{Se}(1)-\mathrm{Ru}(1)-\mathrm{Co}(1)$	54.05(2)
$\mathrm{Se}(1)-\mathrm{Ru}(1)-\mathrm{C}(6)$	153.7(2)	$\mathrm{Se}(1)-\mathrm{Ru}(1)-\mathrm{C}(7)$	94.7(2)	$\mathrm{Se}(1)-\mathrm{Ru}(1)-\mathrm{C}(8)$	110.1(2)
$\mathrm{Co}(1)-\mathrm{Ru}(1)-\mathrm{C}(6)$	100.2(2)	$\mathrm{Co}(1)-\mathrm{Ru}(1)-\mathrm{C}(7)$	99.7(2)	$\mathrm{Co}(1)-\mathrm{Ru}(1)-\mathrm{C}(8)$	161.0(2)
$\mathrm{Ru}(1)-\mathrm{Mo}(1)-\mathrm{Se}(1)$	53.07(2)	$\mathrm{Ru}(1)-\mathrm{Mo}(1)-\mathrm{Co}(1)$	55.35(2)	$\mathrm{Ru}(1)-\mathrm{Mo}(1)-\mathrm{C}(1)$	78.2(1)
$\mathrm{Ru}(1)-\mathrm{Mo}(1)-\mathrm{C}(2)$	67.7(2)	$\mathrm{Se}(1)-\mathrm{Mo}(1)-\mathrm{Co}(1)$	51.69(2)	$\mathrm{Se}(1)-\mathrm{Mo}(1)-\mathrm{C}(1)$	83.1(1)
$\mathrm{Se}(1)-\mathrm{Mo}(1)-\mathrm{C}(2)$	120.7(2)	$\mathrm{Co}(1)-\mathrm{Mo}(1)-\mathrm{C}(1)$	127.9(1)	$\mathrm{Co}(1)-\mathrm{Mo}(1)-\mathrm{C}(2)$	93.1(1)
$\mathrm{Ru}(1)-\mathrm{Se}(1)-\mathrm{Mo}(1)$	71.99(2)	$\mathrm{Ru}(1)-\mathrm{Se}(1)-\mathrm{Co}(1)$	67.45(2)	$\mathrm{Mo}(1)-\mathrm{Se}(1)-\mathrm{Co}(1)$	70.51(2)
$\mathrm{Ru}(1)-\mathrm{Co}(1)-\mathrm{Mo}(1)$	64.62(2)	$\mathrm{Ru}(1)-\mathrm{Co}(1)-\mathrm{Se}(1)$	58.50(2)	$\mathrm{Ru}(1)-\mathrm{Co}(1)-\mathrm{C}(3)$	157.5(2)
$\mathrm{Ru}(1)-\mathrm{Co}(1)-\mathrm{C}(4)$	93.9(2)	$\mathrm{Ru}(1)-\mathrm{Co}(1)-\mathrm{C}(5)$	90.0(2)	$\mathrm{Mo}(1)-\mathrm{Co}(1)-\mathrm{Se}(1)$	57.80(2)
$\mathrm{Mo}(1)-\mathrm{Co}(1)-\mathrm{C}(3)$	98.7(2)	$\mathrm{Mo}(1)-\mathrm{Co}(1)-\mathrm{C}(4)$	87.3(2)	$\mathrm{Mo}(1)-\mathrm{Co}(1)-\mathrm{C}(5)$	153.2(2)
$\mathrm{Se}(1)-\mathrm{Co}(1)-\mathrm{C}(3)$	100.4(1)	$\mathrm{Se}(1)-\mathrm{Co}(1)-\mathrm{C}(4)$	141.5(2)	$\mathrm{Se}(1)-\mathrm{Co}(1)-\mathrm{C}(5)$	102.5(1)
Molecule B					
$\mathrm{Ru}(2)-\mathrm{Mo}(2)$	2.8924(6)	$\mathrm{Ru}(2)-\mathrm{Se}(2)$	2.4483(6)	$\mathrm{Ru}(2)-\mathrm{Co}(2)$	2.4612(8)
$\mathrm{Ru}(2)-\mathrm{C}(21)$	$1.905(6)$	$\mathrm{Ru}(2)-\mathrm{C}(22)$	1.921(6)	$\mathrm{Ru}(2)-\mathrm{C}(23)$	1.887(6)
$\mathrm{Mo}(2)-\mathrm{Se}(2)$	2.5078(6)	$\mathrm{Mo}(2)-\mathrm{Co}(2)$	2.7739 (8)	$\mathrm{Mo}(2)-\mathrm{C}(16)$	$1.977(5)$
$\mathrm{Mo}(2)-\mathrm{C}(17)$	2.007(6)	$\mathrm{Se}(2)-\mathrm{Co}(2)$	$2.3156(8)$	$\mathrm{Co}(2)-\mathrm{C}(18)$	1.812(6)
$\mathrm{Co}(2)-\mathrm{C}(19)$	$1.786(6)$	$\mathrm{Co}(2)-\mathrm{C}(20)$	1.781(5)	$\mathrm{C}(28)-\mathrm{C}(29)$	$1.485(7)$
C(29)-C(30)	1.478(7)	$\mathrm{Mo}(2)-\mathrm{Cp}(2)$	1.985	C-O(tco, av)	1.135
$\mathrm{Mo}(2)-\mathrm{Ru}(2)-\mathrm{Se}(2)$	55.26(2)	$\mathrm{Mo}(2)-\mathrm{Ru}(2)-\mathrm{Co}(2)$	59.96(2)	$\mathrm{Mo}(2)-\mathrm{Ru}(2)-\mathrm{C}(21)$	147.9(1)
$\mathrm{Mo}(2)-\mathrm{Ru}(2)-\mathrm{C}(22)$	112.1(2)	$\mathrm{Mo}(2)-\mathrm{Ru}(2)-\mathrm{C}(23)$	101.3(2)	$\mathrm{Se}(2)-\mathrm{Ru}(2)-\mathrm{Co}(2)$	53.97(2)
$\mathrm{Se}(2)-\mathrm{Ru}(2)-\mathrm{C}(21)$	92.9(1)	$\mathrm{Se}(2)-\mathrm{Ru}(2)-\mathrm{C}(22)$	153.6(2)	$\mathrm{Se}(2)-\mathrm{Ru}(2)-\mathrm{C}(23)$	109.4(2)
$\mathrm{Co}(2)-\mathrm{Ru}(2)-\mathrm{C}(21)$	100.1(2)	$\mathrm{Co}(2)-\mathrm{Ru}(2)-\mathrm{C}(22)$	99.8(2)	$\mathrm{Co}(2)-\mathrm{Ru}(2)-\mathrm{C}(23)$	159.3(2)
$\mathrm{Ru}(2)-\mathrm{Mo}(2)-\mathrm{Se}(2)$	53.34(2)	$\mathrm{Ru}(2)-\mathrm{Mo}(2)-\mathrm{Co}(2)$	55.52(2)	$\mathrm{Ru}(2)-\mathrm{Mo}(2)-\mathrm{C}(16)$	64.6(1)
$\mathrm{Ru}(2)-\mathrm{Mo}(2)-\mathrm{C}(17)$	82.3(1)	$\mathrm{Se}(2)-\mathrm{Mo}(2)-\mathrm{Co}(2)$	51.71(2)	$\mathrm{Se}(2)-\mathrm{Mo}(2)-\mathrm{C}(16)$	117.9(1)
$\mathrm{Se}(2)-\mathrm{Mo}(2)-\mathrm{C}(17)$	83.0(1)	$\mathrm{Co}(2)-\mathrm{Mo}(2)-\mathrm{C}(16)$	94.3(1)	$\mathrm{Co}(2)-\mathrm{Mo}(2)-\mathrm{C}(17)$	130.1(1)
$\mathrm{Ru}(2)-\mathrm{Se}(2)-\mathrm{Mo}(2)$	71.40(2)	$\mathrm{Ru}(2)-\mathrm{Se}(2)-\mathrm{Co}(2)$	67.28(2)	$\mathrm{Mo}(2)-\mathrm{Se}(2)-\mathrm{Co}(2)$	70.08(2)
$\mathrm{Ru}(2)-\mathrm{Co}(2)-\mathrm{Mo}(2)$	64.52(2)	$\mathrm{Ru}(2)-\mathrm{Co}(2)-\mathrm{Se}(2)$	58.76(2)	$\mathrm{Ru}(2)-\mathrm{Co}(2)-\mathrm{C}(18)$	157.1(2)
$\mathrm{Ru}(2)-\mathrm{Co}(2)-\mathrm{C}(19)$	90.4(2)	$\mathrm{Ru}(2)-\mathrm{Co}(2)-\mathrm{C}(20)$	93.4(2)	$\mathrm{Mo}(2)-\mathrm{Co}(2)-\mathrm{Se}(2)$	58.21(2)
$\mathrm{Mo}(2)-\mathrm{Co}(2)-\mathrm{C}(18)$	101.2(2)	$\mathrm{Mo}(2)-\mathrm{Co}(2)-\mathrm{C}(19)$	154.3(2)	$\mathrm{Mo}(2)-\mathrm{Co}(2)-\mathrm{C}(20)$	83.9(2)
$\mathrm{Se}(2)-\mathrm{Co}(2)-\mathrm{C}(18)$	98.8(2)	$\mathrm{Se}(2)-\mathrm{Co}(2)-\mathrm{C}(19)$	105.1(2)	$\mathrm{Se}(2)-\mathrm{Co}(2)-\mathrm{C}(20)$	139.2(2)

mixture was stirred at room temperature for 9 h , then separated on silica gel column. $50 \mathrm{mg}(85 \%)$ of cluster 7 as a brown-red solid was obtained. Anal Calcd. for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{9} \mathrm{RuCoMo}: \mathrm{C}, 30.58$; H, 1.53. Found: C, 30.36; H, 1.69. IR (KBr disk) 3379m, 2082vs, 2076vs, 1991vs, 1773vs, 1893vs. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.46$ (s, $\left.\mathrm{br}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta 2.13(\mathrm{~s}, \mathrm{H}, \mathrm{OH}) ; \delta 4.59(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}$, $\mathrm{CH}) ; \delta 5.22,5.33,5.44,5.54\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$.

3.0.4. Preparation of $\boldsymbol{8}$

A mixture of $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right](31.25 \mathrm{mg}, 0.15 \mathrm{mmol})$ and cluster 3 ($66.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in 20 ml THF. The mixture was refluxed for 6 h and cooled to room temperature, the solvent was removed in vacuo, and the resulting residue was acidified with 12 ml deoxygenated $40 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in 10 min . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was
concentrated in vacuo, and was chromatographed on a $2.5 \times 20 \mathrm{~cm}$ silica gel column using $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane as eluent. The main product 8 (black solid, 17 mg , 25%) and a trace of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ were obtained. Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{9} \mathrm{RuFeMoSe}: \mathrm{C}, 27.13 ; \mathrm{H}, 1.20$. Found: C, 27.09; H, 1.36. IR (KBr disk) 2079vs, 2067 vs , 2021vs, $1998 \mathrm{vs}, 1983 \mathrm{vs}, 1849 \mathrm{vs}$, 1685 s . ${ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; \delta 5.24,5.47,5.71$, $5.94\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right) ; \delta 16.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{M})$.

3.0.5. X-ray structure characterization of $\mathbf{2}$ and $\mathbf{5}$

Crystals of 2 suitable for diffraction analysis were grown from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1) solution and those of $\mathbf{5}$ suitable for diffraction analysis were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-18^{\circ} \mathrm{C}$. The crystals were mounted on a glass fiber. An empirical absorption of 3 correction based on azimuthal scans of several

Table 5
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 5

$\mathrm{Ru}-\mathrm{Mo}$	2.902(1)	$\mathrm{Ru}-\mathrm{Se}$	2.455(2)	$\mathrm{Ru}-\mathrm{Co}$	2.642(2)
$\mathrm{Ru}-\mathrm{C}(1)$	1.89(1)	$\mathrm{Ru}-\mathrm{C}(2)$	1.89(1)	$\mathrm{Ru}-\mathrm{C}(3)$	1.87(1)
$\mathrm{Mo}-\mathrm{Se}$	2.538(2)	Mo-Co	2.774(2)	$\mathrm{Mo}-\mathrm{C}(4)$	1.98(1)
Mo-C(5)	1.99(1)	$\mathrm{Mo}-\mathrm{Cp}$	1.981	$\mathrm{Se}-\mathrm{Co}$	2.296(2)
$\mathrm{Co}-\mathrm{C}(6)$	1.79 (1)	$\mathrm{Co}-\mathrm{C}(7)$	1.77(1)	$\mathrm{Co}-\mathrm{C}(8)$	$1.706(7)$
$\mathrm{O}(9)-\mathrm{C}(14)$	1.22(1)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.47(2)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.51(2)
$\mathrm{C}(18)-\mathrm{C}(21)$	1.50(2)	C-O(tco, av)	1.159		
$\mathrm{Mo}-\mathrm{Ru}-\mathrm{Se}$	55.80(4)	$\mathrm{Mo}-\mathrm{Ru}-\mathrm{Co}$	59.83(4)	$\mathrm{Mo}-\mathrm{Ru}-\mathrm{C}(1)$	149.9(4)
$\mathrm{Mo}-\mathrm{Ru}-\mathrm{C}(2)$	108.9(4)	$\mathrm{Mo}-\mathrm{Ru}-\mathrm{C}(3)$	105.5(4)	$\mathrm{Se}-\mathrm{Ru}-\mathrm{Co}$	53.39(5)
$\mathrm{Se}-\mathrm{Ru}-\mathrm{C}(1)$	97.4(4)	$\mathrm{Se}-\mathrm{Ru}-\mathrm{C}(2)$	159.8(4)	$\mathrm{Se}-\mathrm{Ru}-\mathrm{C}(3)$	103.4(4)
$\mathrm{Co}-\mathrm{Ru}-\mathrm{C}(1)$	94.3(4)	$\mathrm{Co}-\mathrm{Ru}-\mathrm{C}(2)$	108.8(4)	$\mathrm{Co}-\mathrm{Ru}-\mathrm{C}(3)$	156.4(4)
$\mathrm{Ru}-\mathrm{Mo}-\mathrm{Se}$	53.16(4)	$\mathrm{Ru}-\mathrm{Mo}-\mathrm{Co}$	55.42(2)	$\mathrm{Ru}-\mathrm{Mo}-\mathrm{C}(4)$	69.6(3)
$\mathrm{Ru}-\mathrm{Mo}-\mathrm{C}(5)$	77.7(3)	$\mathrm{Se}-\mathrm{Mo}-\mathrm{Co}$	50.98(5)	$\mathrm{Se}-\mathrm{Mo}-\mathrm{C}(4)$	122.8(3)
$\mathrm{Se}-\mathrm{Mo}-\mathrm{C}(5)$	81.7(3)	$\mathrm{Co}-\mathrm{Mo}-\mathrm{C}(4)$	97.9(4)	$\mathrm{Co}-\mathrm{Mo}-\mathrm{C}(5)$	126.5(3)
$\mathrm{Ru}-\mathrm{Se}-\mathrm{Mo}$	71.05(4)	$\mathrm{Ru}-\mathrm{Se}-\mathrm{Co}$	67.46(5)	$\mathrm{Mo}-\mathrm{Se}-\mathrm{Co}$	69.84(5)
$\mathrm{Ru}-\mathrm{Co}-\mathrm{Mo}$	64.75(5)	$\mathrm{Ru}-\mathrm{Co}-\mathrm{Se}$	59.15(5)	$\mathrm{Ru}-\mathrm{Co}-\mathrm{C}(6)$	157.6(4)
$\mathrm{Ru}-\mathrm{Co}-\mathrm{C}(7)$	93.5(4)	$\mathrm{Ru}-\mathrm{Co}-\mathrm{C}(8)$	80.3(3)	$\mathrm{Mo}-\mathrm{Co}-\mathrm{Se}$	59.18(5)
$\mathrm{Mo}-\mathrm{Co}-\mathrm{C}(6)$	99.8(4)	$\mathrm{Mo}-\mathrm{Co}-\mathrm{C}(7)$	157.0(5)	$\mathrm{Mo}-\mathrm{Co}-\mathrm{C}(8)$	77.0(3)
$\mathrm{Se}-\mathrm{Co}-\mathrm{C}(6)$	99.4(4)	$\mathrm{Se}-\mathrm{Co}-\mathrm{C}(7)$	104.2(5)	$\mathrm{Se}-\mathrm{Co}-\mathrm{C}(8)$	129.1(3)

Fig. 2. Molecular structure of 5.
reflection was applied and the program DIFABS [15] was applied to an empirical absorption of $\mathbf{5}$. The data of $\mathbf{3}$ and 5 were corrected for Lorentz and polarization effects. All measurements were made on a Rigaku AFC7R diffractometer with graphite monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation. A summary of selected crystallographic data for 2 and 5 is given in Table 1. All the data were collected at $20 \pm 1^{\circ} \mathrm{C}$ using the $\omega-2 \theta$ scan techniques. All the structures were solved by direct methods [16] and expanded using Fourier technique [17]. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. Full-matrix least-squares refinements minimized the function $\quad \Sigma \omega\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} \quad$ where $\quad \omega=\left[\sigma^{2}\left(F_{\mathrm{o}}\right)\right]^{-1}=$
$4 F_{\mathrm{o}}^{2}\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)\right]^{-2}, \quad \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)=\left[\mathrm{S}^{2}\left(\mathrm{C}+R^{2} \mathrm{~B}\right)+\left(p F_{\mathrm{o}}^{2}\right)^{2}\right][\mathrm{Lp}]^{-2}$. Neutral atom scattering factors were taken from Cromer and Waber [18]. All calculations were performed using the TEXSAN crystallographic software package of Molecular Structure Corporation.

Acknowledgements

This work was supported by the foundation of the Laboratory of Organometallics Chemistry, Shanghai Institute of Organic Chemistry and the director foundation of Lanzhou Instituted of Chemical Physics, Chinese Academy of Sciences.

References

[1] (a) K. Whitmire, J. Coord. Chem. 17 (1988) 95. N.A. Compton, R.J. Errington, N.C. Norman, Adv. Organomet. Chem. 31 (1990) 91. (b) R.D. Adamas, Polyhedron 4 (1985) 2003.
[2] (a) V.W. Day, D.A. Lesch, T.B. Rauchfuss, J. Am. Chem. Soc. 104 (1982) 1290. (b) P. Mathur, J. Mavunkal, V. Rugmini, J. Organomet. Chem. 367 (1989) 243.
[3] (a) P. Mathur, D. Chakrabarty, M.M. Hossain, R.S. Rashid, V. Rumini, Inorg. Chem. 31 (1992) 1106. (b) M. Shieh, Y.C. Tsai, Inorg. Chem. 33 (1994) 2303. (c) S.P. Huang, M.G. Kanatzidis. Inorg. Chem. 32 (1993) 821.
[4] (a) E. Roland, H. Vahrenkamp, Organometallics 2 (1983) 1048. (b) R. Blumhofer, K. Fischer, H. Vahrenkamp, Chem. Ber. 117 (1984) 1039.
[5] (a) H.P. Wu, Y.Q. Yin, X.Y. Huang, K.B. Yu, J. Organomet. Chem. 498 (1995) 119. (b) R. Hoffman, Angew. Chem. Int. Ed. Engl. 21 (1982) 711.
[6] H.P. Wu, Z.Y. Zhao, S.M. Liu, E.R. Ding, Y.Q. Yin, X.Y. Huang, Polyhedron 15 (1996) 4117.
[7] R. Blumhofer, K. Fischer, H. Vahrenkamp, Chem. Ber. 119
(1986) 194.
[8] E.R. Ding, Y.Q. Yin, J. Sun, Polyhedron 16 (1997) 3067.
[9] E.R. Ding, Y.Q. Yin, J. Sun, Polyhedron 16 (1997) 2387.
[10] H.P. Wu, Y.Q. Yin, Q.C. Yang, Inorg. Chim. Acta 245 (1996) 143.
[11] P.B. Fing, Organometallic Syntheses, vol. 1, Transition-Metal Compound, Academic Press, New York, 1965, p. 92.
[12] A. Mantovani, S. Cenini, Inorg. Synth. 16 (1972) 47.
[13] E. Roland, W. Bernhardt, H. Vahrenkamp, Chem. Ber. 119 (1986) 2566.
[14] D. Sefterth, J.E. Hallgren, P.L.K. Huang, J. Organomet. Chem. 50 (1973) 265.
[15] difabs: N. Walker, Stuart, Acta Cryst A 39 (1983) 158-166.
[16] SHELX86: G.M. Sheldrick, in: Crystallographic Computing 3. Oxford University Press, 1985, pp. 175-189.
[17] DIRDIF92: P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. Garcia-Granda, R.O. Gould, J.M.M. Smits, C. Smykalla, 1992.
[18] D.T. Cromer, J.T. Waber, International Tables for X-ray Crystallography, vol. IV, Table 2.2 A, The Kynoch Press, Birmingham, UK, 1979.

[^0]: * Corresponding author.

[^1]: ${ }^{\mathrm{a}} R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}}\right|$.
 ${ }^{\mathrm{b}} w R=\left[\Sigma \omega\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2} / \Sigma \omega F_{\mathrm{o}}^{2}\right]^{1 / 2}$.

[^2]: $B_{\text {eq }}=8 / 3 \pi^{2}\left[U_{11}\left(a a^{*}\right)^{2}+U_{22}\left(b b^{*}\right)^{2}+U_{33}\left(c c^{*}\right)^{2}+2 U_{12} a a^{*} b b^{*} \cos \gamma\right.$ $\left.+2 U_{13} a a^{*} c c^{*} \cos \beta+2 U_{23} b b^{*} c c^{*} \cos \alpha\right]$

[^3]: $B_{\text {eq }}=8 / 3 \pi^{2}\left[u_{11}\left(a a^{*}\right)^{2}+U_{22}\left(b b^{*}\right)^{2}+U_{33}\left(c c^{*}\right)^{2}+2 U_{12} a a^{*} b b^{*} \cos \gamma\right.$ $\left.+2 U_{13} a a^{*} c c^{*} \cos \beta+2 U_{23} b b^{*} c c^{*} \cos \alpha\right]$

